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Submillimeter-Wave Production by Upshifted
Reflection from a Moving Ionization Front

M. LAMPE, E. OTT, W. M. MANHEIMER, AND S. KAINER

Abstract—The Doppler shift and reflection coefficients are calculated

for reflection of an electromagnetic (EM) wave from a moving ionization

front in a stationary gas. It is suggested that this process can be used to

upshift microwaves to submillimeter waves.

INTRODUCTION

AN IONIZATION WAVE can be propagated through

a gas in many ways, e.g., a strong electromagnetic

(EM) pulse, an ionizing shock, a propagating electron beam,

a laser or electron beam sweeping across the gas, or a

programmed sequence of laser pulses [1]. The velocity U of

the ionization front can be relativistic, or even (in the

latter cases) exceed c. Similarly, a finite time after such an

ionizing pulse has passed, a recombination wave will move

across the plasma. In this paper, we consider the reflection

of an EM wave, incident from the neutral gas side, by such

a moving ionization or recombination front. It would

appear that an electron density which will render the plasma

overdense to microwaves can be attained with relatively

modest means. We suggest, therefore, that the Doppler

shift which occurs upon reflection can be used to upshift

microwaves to the submillimeter-wave range. 1

For specificity, we assume that the ionization or

recombination front is planar, and that the EM wave is

normally incident. In the present calculations, the plasma is

treated as cold and collisionless. The calculations are most

easily performed in the frame of reference in which the

ionization or recombination front is stationary [i.e., the

electron density n(z) is time independent], and the gas/

plasma is streaming at velocity U, as illustrated in Fig. 1.

The reflection process under consideration has some

similarities to and some differences from the process of

reflection by a moving mirror. A relevant example of the

latter is upscattering of microwaves by, reflection from a

relativistic electron beam [2]. In both cases, reflection is

from the electron density profile, rather than from individual

particles, and thus the frequency co, of the reflected wave is

Doppler shifted relative to the incident coi:

@,/coi = (1 + ~)/(1 – /3) (1)

where ~ = U/c. In both cases, the duration q of the
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Fig. 1. The scattering problem in the frame of reference of the
ionization front.

reflected pulse is similarly related to that of the incident

pulse

zr/Ti = (1 – p)/(1 + ~). (2)

However, the plasma itself is moving in the case of the

moving mirror (e.g., relativistic electron beam) but is

stationary in the case considered here. This introduces a

difference in the wave dispersion properties in the plasma

which, in the case of an oncoming ionization front (U > 0

in Fig. 1), reduces the reflection coefficient as compared to

what it would be for an oncoming mirror. Indeed it is

obvious that this must be true, since the pulse reflected from

a moving mirror has more energy than the incoming pulse,

the extra en&-gy being supplied by the kinetic energy of the

mirror; in the case of reflection from a moving ionization

front in a stationary gas, this energy source is not available.

However, the reflection coefficient from a receding re-

combination front is shown to be exactly the same as that

from a receding mirror.

Although the reflection coefficient is smaller for an

oncoming ionization front than for an oncoming overdense

electron beam, the efficiency, i.e., the reflected EM wave

energy divided by the total energy input (incoming wave,

plus beam energy or energy invested in ionization) of the

two schemes may, in practical cases, be comparable.

Furthermore, the ionization front scheme has advantages

with respect to size and cost.

ANALYSIS

We perform the analysis in the frame of reference in

which the ionization front is stationary (Fig. 1). We make

no assumptions about the shape or width of the ionization

front; it may be sharp or broad, the only requirements

being that n(z) + O for z -+ – co, and n(z) + constant for

z ~ + co. We let .l(z,t) = —n(z)eu(z,t) be the oscillating,

transverse plasma current; v(z,t) is thus the oscillating

component of the electron fluid (i.e., local mean) velocity,
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which is determined by the momentum conservation

equation

n$+nU$+Uv$z=–2
( )
E+h Jxi9 +R.

my c

(3)

For the case of a recombination front (U z O), R =

Uo(dn/dz) represents the loss of electron oscillating

momentum upon recombination; for the case of an

ionization front (U > O), R = O, since electrons are born

(ionized) with v = O. Using (3) and Maxwell’s equations

for curl E and curl B, assuming time dependence exp( – icot),

and performing some algebraic manipulations, we find the

wave equations

(c’D’ + 0)2– coP2)(– im + UD)E = O, U ;> O (4a)

(– ico + UD)COP-2(C2D2 + co’ – 0P2)E = O,

U <0 (4b)

where D = djdz, COP2 = 4rcn(z)e2/my, and y-2 E I – ~z.

Note that co is related to the incident frequency in the

laboratory frame by co = COi(l + fl)l/2/(1 – /3)1/2, and COP

is numerically the same as the plasma frequency in the

laboratory frame.

In the gas (assumed to have the dielectric properties of

the vacuum), i.e., at z ~ – m, the solutions are, of course,

the incident and reflected EM waves, k = f co/c. In the

plasma, i.e., at z -+ + co, where COPis constant, there are

three solutions: (if WP2 > ca’) the evanescent and purely

growing waves, k = ~ i(co,’ – OJ2)l/2/C, and a propagating

wave k = co/U which convects with the plasma. The first

two waves have exactly the same dispersion relation as in a

stationary plasma. The third wave would reduce to a

time-independent magnetic field B = Boj exp(ikz) in a

stationary plasma, but in a moving plasma it is a genuine

transverse EM wave, transporting energy at the plasma

velocity U. We shall refer to it as the magnetic wave.

We now calculate the reflection coefficient by solving (4)

exactly. We recall that no assumptions have been made as

to whether the front is sharp or broad. We consider first the

case U s O. For z ~ + co, where COPbecomes constant, one

of the three independent solutions of the third-order

differential equations (4b) is proportional to exp(icoz/U),

i.e., represents the magnetic wave. This solution must be

excluded, since, for U K O, ittransports energy in from

z = + co. The other two solutions satisfy

[d2/dz2 + (m’ - a)P2)/c2]E = O (5)

which is identical to the wave equation for the well-known’

problem of a stationary ionization front in a stationary

plasma (i.e., a mirror). The solution to (5) in the gas at
z + — m is thus of the form

E(z) = Ei [exp (tmz/cj + r exp (– twz/c)]. (6)

In general, the stationary reflection coefficient r depends on

the form of n(z), and the calculation of r is, in general, a

difficult but well-known mathematical problem. However,

there are two cases in which the evaluation of Irl becomes

simple. First, in the limit of a sharp ionization front (i.e.,

narrower than a wavelength),

r = 1 – (1 – cap’/a#)l/2

1 + (1 –“ ap2/@’)1/2 “
(7)

Second, lrl = 1 if the plasma is overdense (OP > o),

whatever the detailed form of n(z). In these two cases, we

shall produce an exact solution to our problem. In the

general case, we reduce the problem of interest to the

calculation of r, i.e., to the solution of the reflection

problem at a stationary front in a stationary plasma. The

most interesting case, of course, is the overdense case, in

which reflection is maximized. We note that the criterion

for overdense is COP> co in the front frame, i.e., COP>

COi(l + /3)1’2/(1 – fl)l’2 in the laboratory frame.

The ratio of reflected to incident power (still in the frame

of the recombination front) is

pr/pi= \Er12/lEi/2= ]rlz. (8)

Lorentz transforming back to the laboratory frame, where

the plasma is stationary but the recombination front is

receding, we have for reflected power

P,*/Pi* = lry(~ - Ipl)2/(1 + IPI)’ (9a)

and for total energy (integrated over the pulse)

&,*/&i*= Iry(l – lPl)/(1 + IPI). (9b)

Equations (9a) and (9b) are compatible because the reflected

pulse is elongated according to (2). Equations (5)–(9) are

all identical to those for a receding mirror.

We now consider the case of an oncoming ionization

front U >0. E is a solution of (4a) if

E=
J

‘ dz’ exp [ico(z – z’)/u] g(z’) (Jo)
–m

and g is a solution of (5). Using the solution (6) in (10) and

performing the integration, we find’ in the gas, i.e., for
z+ —CQ,

E = Ei [exp (imz/c) + r[(l – ~)/(1 + ~)] exp (– icoz/c)].

(11)

Thus the reflected power is given by

P?/pi = Irlll – /3)2/[1-t /’?)2. (12)

Transforming back to the laboratory frame, we find that

the power reflection coefficient is identical to what it would

be for a stationary front

P,*/Pi* = Irlz (13a)

but the total reflected energy is less than the incident energy

&r*/Ei*= Irlz(l - py~l + p). (13b)

2 Equation (11) is the solution of (4a) which satisfied the boundary
conditions that the magnetic wave vanishes at z = —m, and the
growing wave (if the plasma is overdense) or the leftward propagating
EM wave (if the plasma is underdense) vanish at z = + co.
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Once again, (13a) and (13b) are compatible because the

reflected pulse is shortened according to (2). Equations (13)

differ from those for a moving mirror, which would be

P,*/Pi* = P71z(l + p)2/(1 – 13)2 (14a)

&,*/&i* = lr12(l + j3)/(1 – /3). (14b)

Our derivation of (7)–(9) and (1 1)–(13) has been quite

general; however, it is of pedagogical interest to note that

in the special case of a sharp ionization or recombination

front [3], these equations could also be derived in a more

standard way, by matching gas and plasma solutions at the

front. In doing this, one must realize that for the sharp

ionization front case, there is an extra (as compared to the

usual problem of reflection at a stationary ionization front)

solution in the plasma—the magnetic wave. Thtts one more

continuity condition is needed at the front, in addition to

the usual conditions of continuity of E and H. This

condition is that J = O at the front (since electrons are

born with no oscillating velocity). From this, it follows that

dH/i7z is also continuous.

We note from (13b) that the reflected energy is less than

the incident energy, even when the usual EM wave in the

plasma is cut off (co < coP) and cannot carry away the

excess energy. The explanation for this is as follows. For

U > 0, and in the limit of a sharp ionization front, explicit

solution of (4a) shows [3] that both the evanescent wave

and the magnetic wave are excited in the plasma. The

latter transmits energy (both electromagnetic energy and

kinetic energy of transverse electron currents) into the

plasma. In the laboratory frame, it would be more correct

to say that magnetic energy and transverse electron kinetic

energy are left behind in the plasma as the front moves on.

In the opposite limit of a broad front, kinetic energy of

transverse electron flow convects into the plasma, but the

flow of different electrons is not coherent; thus the transverse

current, and the amplitude of the magnetic wave, become

vanishingly small. In either case, wave energy penetrates an

overdense plasma, and overall conservation of energy and

momentum can be demonstrated explicitly [3]. The external

energy source required to ionize the gas plays no role in the

wave energy balance.

For the recombination front case U <0, kinetic energy

of transverse electron oscillation is carried toward the

neutral gas, and is ultimately released as recombination

radiation. Again, it can be shown that energy and momen-

tum are conserved [3], The magnetic wave is never excited,
since it would carry energy in from z = + co.

It is physically obvious that EM waves cannot be reflected

from an oncoming ionization front moving faster than c,
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since the front would instantaneously overtake the wave.

What happens mathematically is that, in the superluminous

case, the evanescent and growing waves in the plasma both

become (in the laboratory frame) propagating waves. Both

of these are excited, rather than one reflected wave and one

evanescent wave.

CONCLUSIONS

Microwaves reflected from an approaching ionization

front will be’ Doppler upshifted, as given in (1). The

reflection coefficient, given by (13a) and (13b), becomes

small in the relativistic limit j? -+ 1. Nevertheless, it may be

possible to produce very impressive power levels in the

submillimeter regime, using recently developed high-power

microwave sources. Furthermore, this technique promises

to be precisely tunable, and to require a very modest

investment in energy and equipment, compared to other

methods of upshifting microwaves, e.g., [3].

Finally, we note that several calculations appear in the

literature of reflection of EM waves from a moving

discontinuity between stationary dispersionless dielectrics

[4]. This model leads to a reflection coefficient equal to that

at a physically moving dielectric surface, i.e., our (14), and

thus different from our results, i.e., (12). The macroscopic

model of a dispersionless dielectric interface must be

examined carefully to determine whether it applies to any

given physical situation; in particular, it is clearly in-

applicable to the case of an ionization front. This matter

will be discussed more fully in a future publication [3].
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