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Submillimeter-Wave Production by Upshifted
Reflection from a Moving Ionization Front

M. LAMPE, E. OTT, W. M. MANHEIMER, AnD S. KAINER

Abstract—The Doppler shift and reflection coefficients are calculated
for reflection of an electromagnetic (EM) wave from a moving ionization
front in a stationary gas. It is suggested that this process can be used to
upshift microwaves to submillimeter waves.

INTRODUCTION

N IONIZATION WAVE can be propagated through
a gas in many ways, e.g., a strong electromagnetic
(EM) pulse, an ionizing shock, a propagating electron beam,
a laser or electron beam sweeping across the gas, or a
programmed sequence of laser pulses [1]. The velocity U of
the ionization front can be relativistic, or even (in the
latter cases) exceed c¢. Similarly, a finite time after such an
ionizing pulse has passed, a recombination wave will move
across the plasma. In this paper, we consider the reflection
of an EM wave, incident from the neutral gas side, by such
a moving ionization or recombination front. It would
appear that an electron density which will render the plasma
overdense to microwaves can be attained with relatively
modest means. We suggest, therefore, that the Doppler
shift which occurs upon reflection can be used to upshift
microwaves to the submillimeter-wave range.!

For specificity, we assume that the ionization or
recombination front is planar, and that the EM wave is
normally incident. In the present calculations, the plasma is
treated as cold and collisionless. The calculations are most
easily performed in the frame of reference in which the
ionization or recombination front is stationary [i.e., the
electron density n(z) is time independent], and the gas/
plasma is streaming at velocity U, as illustrated in Fig. 1.

The reflection process under consideration has some
similarities to and some differences from the process of
reflection by a moving mirror. A relevant example of the
latter is upscattering of microwaves by reflection from a
relativistic electron beam [2]. In both cases, reflection is
from the electron density profile, rather than from individual
particles, and thus the frequency w, of the reflected wave is
Doppler shifted relative to the incident w;:

o jo; = (1 + B — p) M

where B = Ujc. In both cases, the duration 1, of the

Manuscript received January 20, 1977. This work was supported by
the Naval Surface Weapons Center.

M. Lampe, W. M. Manheimer, and S. Kainer are with the Naval
Research Laboratory, Washington, DC 20375.

E. Ott was with the Naval Research Laboratory, Washington,
DC 20375. He is now with the Department of Electrical Engineering,
Cornell University, Ithaca, NY.

! Downshift of an IR laser beam off a moving recombination front
may also prove useful.
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Fig. 1. The scattering problem in the frame of reference of the
ionization front.

reflected pulse is similarly related to that of the incident
pulse

T/t = (1 = B/ + P). @

However, the plasma itself is moving in the case of the
moving mirror (e.g., relativistic electron beam) but is
stationary in the case considered here. This introduces a
difference in the wave dispersion properties in the plasma
which, in the case of an oncoming ionization front (U > 0
in Fig. 1), reduces the reflection coefficient as compared to
what it would be for an oncoming mirror. Indeed it is
obvious that this must be true, since the pulse reflected from
a moving mirror has more energy than the incoming pulse,
the extra energy being supplied by the kinetic energy of the
mirror; in the case of reflection from a moving ionization
front in a stationary gas, this energy source is not available.
However, the reflection coefficient from a receding re-
combination front is shown to be exactly the same as that
from a receding mirror.

Although the reflection coefficient is smaller for an
oncoming ionization front than for an oncoming overdense
electron beam, the efficiency, i.e., the reflected EM wave
energy divided by the fotal energy input (incoming wave,
plus beam energy or energy invested in ionization) of the
two schemes may, in practical cases, be comparable.
Furthermore, the ionization front scheme has advantages
with respect to size and cost.

ANALYSIS

We perform the analysis in the frame of reference in
which the ionization front is stationary (Fig. 1). We make
no assumptions about the shape or width of the ionization
front; it may be sharp or broad, the only requirements
being that n(z) —» 0 for z - — oo, and n(z) — constant for
z - +o0. We let J(z,2) = —n(z)ev(z,t) be the oscillating,
transverse plasma current; »(z,¢) is thus the oscillating
component of the electron fluid (i.e., local mean) velocity,
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which is determined by the momentum conservation
equation
v v dn e,

n—+nU—+Uv—=—e-(E+lUxB)+R.
ot 0z dz my ¢
3

For the case of a recombination front (U < 0), R =
Uv(dn/dz) represents the loss of electron oscillating
momentum upon recombination; for the case of an
ionization front (U > 0), R = 0, since electrons are born
(ionized) with v = 0. Using (3) and Maxwell’s equations
for curl E and curl B, assuming time dependence exp(— iwt),
and performing some algebraic manipulations, we find the
wave equations

(*D?* + ® — 0,))(—iw + UD)E = 0,
(—iw + UD)w,”*(*D* + o® ~ 0,})E = 0,
U< 0 (4b)

where D = djdz, w,? = 4nn(z)e*/my, and y™2 = | — B2
Note that o is related to the incident frequency in the
laboratory frame by o = w1l + B)'/*/(1 — B)'/*, and w,
is numerically the same as the plasma frequency in the
laboratory frame.

In the gas (assumed to have the dielectric properties of
the vacuum), i.e., at z - — o0, the solutions are, of course,
the incident and reflected EM waves, k¥ = +w/c. In the
plasma, ie., at z — + o0, where w, is constant, there are
three solutions: (if w,”> > w?) the evanescent and purely
growing waves, k = +i(w,” — w?)'/?/c, and a propagating
wave k = w/U which convects with the plasma. The first
two waves have exactly the same dispersion relation as in a
stationary plasma. The third wave would reduce to a
time-independent magnetic field B = B,y exp(ikz) in a
stationary plasma, but in a moving plasma it is a genuine
transverse EM wave, transporting energy at the plasma
velocity U. We shall refer to it as the magnetic wave.

We now calculate the reflection coefficient by solving (4)
exactly. We recall that no assumptions have been made as
to whether the front is sharp or broad. We consider first the
case U < 0. Forz —» + 00, where «, becomes constant, one
of the three independent solutions of the third-order
differential equations (4b) is proportional to exp(iwz/U),
i.e., represents the magnetic wave. This solution must be
excluded, since, for U < 0, it transports energy in from
z = + 0. The other two solutions satisfy

[d*dz? + (0* — w,2)[c*]E = 0 (5)

U>0 (4a)

which is identical to the wave equation for the well-known

problem of a stationary ionization front in a stationary
plasma (i.e., a mirror). The solution to (5) in the gas at
z — — oo is thus of the form

E(z) = E; [exp (iwz[c) + T exp (—iwz/c)]. ©)

In general, the stationary reflection coefficient I" depends on
the form of n(z), and the calculation of I is, in general, a
difficult but well-known mathematical problem. However,
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there are two cases in which the evaluation of |I'| becomes
simple. First, in the limit of a sharp ionization front (i.e.,
narrower than a wavelength),
_ 1 -0 = o)
1+ (1 - o)

Q)

Second, |I'| = 1 if the plasma is overdense (w, > w),
whatever the detailed form of n(z). In these two cases, we
shall produce an exact solution to our problem. In the
general case, we reduce the problem of interest to the
calculation of I', i.e., to the solution of the reflection
problem at a stationary front in a stationary plasma. The
most interesting case, of course, is the overdense case, in
which reflection is maximized. We note that the criterion
for overdense is w, > w in the front frame, ie., @, >
o1 + B*/(1 — B)'* in the laboratory frame.

The ratio of reflected to incident power (still in the frame
of the recombination front) is

P[P, = |EY|E)* = T ®)

Lorentz transforming back to the laboratory frame, where
the plasma is stationary but the recombination front is
receding, we have for reflected power

PXP#* = [TPP(E — IBD*IL + |B1)* (9a)
and for total energy (integrated over the pulse)
e*fe* = [CI2(1 — 1BD/(L + |B)). (9b)

Equations (9a) and (9b) are compatible because the reflected
pulse is elongated according to (2). Equations (5)-(9) are
all identical to those for a receding mirror.
We now consider the case of an oncoming ionization
front U > 0. E is a solution of (4a) if
E = f dz' exp [iow(z — 2)JU ] g(z") (10)
and g is a solution of (5). Using the solution (6) in (10) and

performing the integration, we find® in the gas, i.., for
z = — 00,

E = E, [exp (iwz]c) + T[(1 = BI(1 + p)] exp (—iwz/c)].
an

Thus the reflected power is given by
PJP; = [TI*(1 — B*/(1 + B)*. (12)

Transforming back to the laboratory frame, we find that
the power reflection coefficient is identical to what it would

be for a stationary front
PP = |[|? (13a)

but the total reflected energy is less than the incident energy

&t = IT*(L = B + B). (13b)

2 Equation (11) is the solution of (4a) which satisfied the boundary
conditions that the magnetic wave vanishes at z = —o0, and the
growing wave (if the plasma is overdense) or the leftward propagating
EM wave (if the plasma is underdense) vanish at z = +00.
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Once again, (13a) and (13b) are compatible because the
reflected pulse is shortened according to (2). Equations (13)
differ from those for a moving mirror, which would be

PAPF = [T1*(1 + B)*/(1 — By (142)
&*fe* = TP + P/ — ). (14b)

Our derivation of (7)-(9) and (11)—(13) has been quite
general ; however, it is of pedagogical interest to note that
in the special case of a sharp ionization or recombination
front [3], these equations could also be derived in a more
standard way, by matching gas and plasma solutions at the
front. In doing this, one must realize that for the sharp
ionization front case, there is an extra (as compared to the
usual problem of reflection at a stationary ionization front)
solution in the plasma—the magnetic wave. Thus one more
continuity condition is needed at the front, in addition to
the usual conditions of continuity of E and H. This
condition is that J = 0 at the front (since electrons are
born with no oscillating velocity). From this, it follows that
JH/0z is also continuous.

We note from (13b) that the reflected energy is less than
the incident energy, even when the usual EM wave in the
plasma is cut off (v < w,) and cannot carry away the
excess energy. The explanation for this is as follows. For
U > 0, and in the limit of a sharp ionization front, explicit
solution of (4a) shows [3] that both the evanescent wave
and the magnetic wave are excited in the plasma. The
latter transmits energy (both electromagnetic energy and
kinetic energy of transverse electron currents) into the
plasma. In the laboratory frame, it would be more correct
to say that magnetic energy and transverse electron kinetic
energy are left behind in the plasma as the front moves on.
In the opposite limit of a broad front, kinetic energy of
transverse electron flow convects into the plasma, but the
flow of different electrons is not coherent ; thus the transverse
current, and the amplitude of the magnetic wave, become
vanishingly small. In either case, wave energy penetrates an
overdense plasma, and overall conservation of energy and
momentum can be demonstrated explicitly [3]. The external
energy source required to ionize the gas plays no role in the
wave energy balance.

For the recombination front case U < 0, kinetic energy
of transverse electron oscillation is carried toward the
neutral gas, and is ultimately released as recombination
radiation. Again, it can be shown that energy and momen-
tum are conserved [3]. The magnetic wave is never excited,
since it would carry energy in from z = +co.

It is physically obvious that EM waves cannot be refiected
from an oncoming ionization front moving faster than c,
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since the front would instantaneously overtake the wave.
What happens mathematically is that, in the superluminous
case, the evanescent and growing waves in the plasma both
become (in the laboratory frame) propagating waves. Both
of these are excited, rather than one reflected wave and one
evanescent wave.

CONCLUSIONS

Microwaves reflected from an approaching ionization
front will be Doppler upshifted, as given in (1). The
reflection coeflicient, given by (13a) and (13b), becomes
small in the relativistic limit § — 1. Nevertheless, it may be
possible to produce very impressive power levels in the
submillimeter regime, using recently developed high-power
microwave sources. Furthermore, this technique promises
to be precisely tunable, and to require a very modest
investment in energy and equipment, compared to other
methods of upshifting microwaves, e.g., [3].

Finally, we note that several calculations appear in the
literature of reflection of EM waves from a moving
discontinuity between stationary dispersionless dielectrics
[4]. This model leads to a reflection coefficient equal to that
at a physically moving dielectric surface, i.e., our (14), and
thus different from our results, i.e., (12). The macroscopic
model of a dispersionless dielectric interface must be
examined carefully to determine whether it applies to any
given physical situation; in particular, it is clearly in-
applicable to the case of an ionization front. This matter
will be discussed more fully in a future publication [3].
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